当前位置:首页>> >>


旋架式加速度过载模拟实验台结构设计与分析.rar

收藏

资源目录
    文档预览:
    编号:20181016173914567    类型:共享资源    大小:5.41MB    格式:RAR    上传时间:2018-10-16
    尺寸:148x200像素    分辨率:72dpi   颜色:RGB    工具:   
    15
    金币
    关 键 词:
    架式 加速度 过载 模拟 实验 结构设计 分析
    资源描述:
    南昌航空大学科技学院学士学位论文 11 前 言1.1 选题的意义现代军事、国防领域对火工品飞行器的机动性能要求很高。火工品的机动性能好,对其整体强度要求就越高,承受机动过载的能力越强。我国对导弹等飞行器的研究方向大多集中在对其控制系统的研究这方面。但是为了满足现代导弹的一些高性能要求,如导弹的全方位、大空域机动,末端变化轨迹运动等,采用传统的姿态控制方案是难以奏效的,必须对导弹的法向过载直接加以控制。以往过载控制是基于局部线性化的线性模型,并且过载控制与姿态控制并存于同一个系统中,导弹过载控制系统的非线性反演设计 【16】 提出了一种新的过载控制方案,这种方案只需要对过载量进行测量控制,而不再需要对一些角度进行测量和控制,因此这种方案使整个控制系统所需要的零部件减少,控制器结构更加简单明了。非线性自适应控制在最近十几年引起人们的广泛关注,并取得了显著的发展。其中比较典型的是反演设计技术,它是一种系统的非线性设计方法,通过一步一步地构造李雅普诺夫函数推导出控制律,取得了全局的稳定性,并且这种稳定性分析是构造性的。文章中证明了飞行器姿态的收敛与过载收敛等价,并提出了一种关于导弹过载量严格反馈形式的简化数学模型。并利用反演设计技术设计了该过载系统的控制器,并应用李雅普诺夫稳定性理论分析了系统的稳定性。同时给出实例,进行了仿真。导弹过载控制系统的非线性反演设计 【16】 在证明了飞行器姿态的收敛与过载收敛等价的基础上,提出了一种导弹过载控制系统的简化非线性数学模型,并利用反演设计技术,设计了纵向过载的控制器,该方法使控制系统结构大大简化。仿真研究验证了简化过载模型的合理性和控制方法的有效性。导弹制导控制系统是一种自动控制系统,它是导弹的核心组成部分,而对导弹制导控制系统的研究落脚于对制导规律和控制规律的设计,参照导弹实体,结合工程实际,考虑现有制导规律和控制规律存在的问题,具体进行的主要工作如下: (1)导弹制导控制系统分析。主要包括对导弹制导控制系统的原理、组成的分析,介绍其分类,并给出了设计制导控制系统应满足的指标,结合研究对象,对自动寻的制导控制系统进行了详细的探讨。 (2)导弹运动学建模。引入了研究导弹制导控制系统常用的坐标系及各坐标系之间的关系;分析了作用在导弹上的力与力矩,在此基础上建立了导弹动力学方程和运动学方程,结合导弹质量变化和对导弹的操纵关系,建立了空空导弹的运动学模型;针对研究对象,在一定假设的基础上建立了倾斜转弯导弹的数学模南昌航空大学科技学院学士学位论文 2型。在飞行器工程领域 【17】 ,能量管理技术并不陌生。如轨道器无推力再人返回段的末端能量管理(TAEM),以及耗尽关机固体弹道导弹的能量管理。与这两种已有能量管理技术不同的是,THAAD导弹的EMM发生在刚刚发射后的主动段,导弹飞行在距离发射点不远的稠密大气层中。受反导拦截反应时间的限制,其能量管理不宜采用TAEM式的增大飞行距离办法。而可供选择的另一种方法就是增大导弹的飞行攻角,依靠阻力的增大、主发动机推力沿速度轴分量的减小来降低速度、耗散能量。通过大攻角飞行特性分析可知,在导弹飞行主动段,当导弹以90 。 以内的大攻角飞行时,阻力作用增大,推力增速作用减小,导致飞行速度增幅减小,从而转弯惯性减小;推力在速度法向的分量与非线性升力相叠加,弹道转弯作用力增大,法向加速度增大。所以,在转弯惯性减小与法向加速度增大两项作用下,导弹具有“速度耗散”与“高机动快速转弯”的综合特性。并且,主动段大攻角高机动飞行,由于可以采用高操纵性的推力矢量控制方法进行大攻角飞行稳定控制而具有可实现性。因此,采用大攻角飞行的弹道设计方法可以达成对导弹速度的能量管理。显然,大攻角飞行可以达到能量耗散的目的。然而,如何给定适当的控制指令,控制导弹以大攻角飞行状态实现适当形式的高机动弹道轨迹,成为实现大攻角飞行能量耗散技术的关键问题。通过分析,耗尽关机固体弹道导弹能量管理控制的“姿态调制法”,可以应用于此。采用耗尽关机方案的固体弹道导弹,为了进行能量管理、实现射程和横向控制,在发动机耗尽关机前采用了“姿态调制导引控制方法”。其具体控制方式为——将姿态变化设计成调制波形,控制弹体姿态连同发动机主推力方向与原期望速度增量方向产生较大夹角,降低主推力沿期望速度方向作用的加速度增量,从而达到消耗多余能量的目的。导弹等飞行器特别是对对空发射等高质量、高精度的武器,它们有很高的要求:要有很好的机动性能,导弹的机动性能越好,要求它的整体结构强度就越高,承受机动过载的能力越强,特别是战 术 导 弹 , 这 类 导 弹 用 于 攻 击 快 速 活 动 目 标 , 对 姿态 控 制 系 统 的 动 态 品 质 要 求 较 高 , 尤 其 要 求 具 有 反 应 迅 速 和 能 使 导 弹 产 生 所 需 较大 过 载 ( 横 向 和 法 向 加 速 度 ) 的 性 能 , 因 此 对 发动机的结构性能就要求越高,像这种高科技武器,一般是要求没有质量问题,所以我们在生产使用前必须对一些参数进行实验性测试,这样才能保证它在高空过载情况下正常放心使用,并且保证其误差在允许范围内,因此,我们必须设计出相关仪器来测试出其参数。导弹在机动过载情况下其壳体的受力比较复杂,它会受到很多方面的影响:导弹在机动过载情南昌航空大学科技学院学士学位论文 3况下其壳体的受力比较复杂,假设导弹的主翼压心(F 主) 、质心(F 质)及尾翼压心(F 尾)的分布是按图 1-1 所示。如果控制导弹的俯仰、偏航是由 F 尾(F 尾可能是尾翼、燃气舵或柔性喷管等产生的侧向力)来实现的,导弹在有大的离轴角度变向(如抬头)时其飞行轨迹如图 1-1。图 1-1 导弹机动过载下的受力简图导弹在机动过载情况下产生的法向加速度对发动机的影响为:1) 法向加速度对导弹机械结构的影响一般机动性能好的导弹过载高达几十个 g,在这种情况下弹体的弯曲变形非常明显,弯曲幅度在几十毫米甚至上百毫米(与导弹长度有关) 。很显然这么大的变形势必影响发动机结构强度,甚至弹体可能会被折断;同时大变形也可能引起绝热层的脱粘等,增加了发动机着火、烧穿等的可能性。2 ) 法向加速度对导弹发动机内流场的影响法向加速度造成弹体的变形改变了发动机内部空间,内流场有很大变化,特别是在发动机的后部形成折射使该处能量相对聚集,加速了此处绝热层的冲刷和烧蚀,增加了发动机烧穿的可能性。法向加速度造成发动机燃烧室内的燃烧产物(特别是凝聚相组份)会沿着法向方向有相对运动。也就是说此刻的内流场中燃烧产物分布的密度有很大差别,发动机燃烧室内法向方向一侧凝聚相产物的密度要大大高于另一侧,这种现象又加速了这侧的烧蚀。法向加速度对导弹的影响结果如图 1-2 所示。南昌航空大学科技学院学士学位论文 4图 1-2 法向加速度对导弹的影响示意图实践证明如果导弹发动机只做地面普通热试车试验,不研究在法向加速度作用下的性能,可能会因此而导致导弹在机动飞行中失效。为保证导弹的产品的质量和可靠性,必须设计和制作一套地面过载热试车系统,对导弹在法向加速度作用下的性能进行评价,用于指导产品设计与质量控制。所以,综上所述,设计的机器不仅要能满足地面的普通的热试车试验,而且还要能在法向加速度作用下对飞行器进行性能的检测,不至于导弹在机动飞行中失效。1.2 国内外发展状况导弹的气动布局是这样设计的:在导弹的红外导引头之后,紧接着有两组十字型翼面。前面一组为固定的鸭式翼,后面一组用于俯仰和偏航控制。在俯仰和偏航控制翼面之后有一对副翼,与自由滚转的尾部一起实现滚转稳定。在弹体的后段还有 4 片翼板与十字型尾翼连接在一起,以在导弹进行大过载机动时对弹体后段起加强作用。因为在攻击末段,固体发动机已快燃烧完,弹体后段实际上是一个空壳,如果没有这些翼板,在导弹进行大过载机动时,弹体可能由于应力作用而解体。据认为,巨蟒 4 导弹可承受的最大加速度过载高达 70g,而美国的 AIM9M 却只有35g。到目前为止,在加速度对发动机性能的影响方面,人们主要进行了火箭自旋引起的横向加速度对推进剂药柱产生的加速度效应研究,即燃速增加导致发动机内弹道性能发生畸变,影响了发动机的正常工作,这方面,国内学者进行了大量的试验研究和理论分析工作,并取得了重大的进展。然而实践证明,自旋产生的横向加速度与导弹机动飞行的横向加速度对发动机工作产生的影响是有较大差别的,后者对发动机的影响更为突出,而且长期被人们忽视,国内外至今缺乏对其的研究资料。横向加速度对飞行发动机绝热层烧蚀影响的实验研究 [10]设计了实验发动机和实验装置,进行了一系列飞行固体火箭发动机横向过载模拟实验,获得了不同加速度下发动机绝热层烧蚀率定量化的式样数据,验证了横向加速度严重影响局部绝热层烧蚀的事实,研究表明,横向加速度对绝热层烧蚀影响主要原因是由于横向加速度导致燃烧室内流场发生改变,离心力方向侧壁绝热层形成“烧蚀坑” ,并且绝热层的烧蚀率随横向加速度的增加有加倍增长的趋势。因此十分必要开展横向加速度对发动机性能的影响研究,获得实验数据,指导工程南昌航空大学科技学院学士学位论文 5型号设计。固体火箭发动机高速旋转试验台【12】 ,从方案设计、动力源选择、结构设计及传感器选择等方面研究了高速旋转试验台涉及的几个主要问题。虽然从实际使用情况看,图示固体火箭发动机高速旋转试验台能够满足推力和压力—时间曲线同时测量的要求,同时震动噪声也较低,试验台运转、使用和维护性能也较好。但此试验台不能满足我们对发动机进行离心过载的模拟实验。图 1-3 高速旋转立式实验台组成原理示意图国内外的实践证明如果导弹发动机只做地面普通热试车试验,不研究在法向加速度作用下的性能,可能会因此面导致导弹在机动飞行中失效。为保证导弹的产品的质量和可靠性,必须设计和制作一套热试车系统,对导弹在法向加速度作用下的性能进行评价,用于指导产品设计与质量控制。1.3 论文的主要内容首先是了解该课题的特点以及发展状况,对所选课题有个初步的了解,为总体方案的提出打下基础.第二步是传动系统方案的设计、比较与确定,通过对传动方案的选择,从而完成整体设计.画出装配图,装配图画好后,从装配图中设计计算选择各零件以及完成对零件图的初步绘制, 用三维软件 SolidWorks 2010 建立实体模型。给模型添加运动学参数、质量特性参数、力学特性参数等外部环境,基于 SolidWorks SimulationXpress 完成实验虚拟平台下的运动测试。最后是对工件的夹紧方案的设计、比较与确定,完成设计后,是要与生产部门讨论加工问题,看设计的方案是否符合加工方案,不合适的地方再加以再进.最后使之能满足生产实际的需要。南昌航空大学科技学院学士学位论文 62 实验台的总体方案设计2.1 技术参数设计2.1.1 待测件结构尺寸设计本试验台应该适应以下发动机试验要求:1)过载模拟(单台或双台发动机)2)发动机不点火试验3)待测件长度:1000 ~2000mm4)待测件直径:120 ~150mm5)待测件重量: 35Kg2.1.2 待测件载荷设计最大离心加速度:70g旋转架承载能力:不低于 15000N2.1.3 转台运动参数设计转台采用变频调速方式,技术指标:旋转架转速:小于 300r/min旋转架启动平稳时间:180S电机额定功率:5.5KW上面装有压力应变片,并且配有控制箱,具有安全措施保障人员安全2.2 总体方案的提出以及特点2.2.1 方案方案图:南昌航空大学科技学院学士学位论文 7图 2-1 方案总图方案图结构组成:1.底座; 2.支柱; 3.支撑板; 4.大轴承;5.主轴; 6.夹具; 7. 夹具 1; 8. 夹具 2;9. 夹具 3; 10. 内轴; 11. 螺栓;12.试件; 13. 小轴承; 14.螺钉; 15. 螺栓;实体图:南昌航空大学科技学院学士学位论文 8图 2-2 方案实体图2.2.2 特点主要特色是:结构简单、拆装方便、较好的制造工艺,并且使用同步带的传动可以提高传动效率,在过载的环境下能够起到自我保护作用,提高了使用的安全性能,并且可以能够较好的满足设计的要求性能。同时在 8 根支撑柱的支撑作用下,可以承担相当大的轴向载荷,这也为在实验台的安全性能方面起到了很重要的稳定作用,因为在轴向方向的力还是很大的,使用支撑柱而不是用箱体结构也不影响使用带的传动方式的使用。其二,使用空心轴的同时不仅能够满足引出线的目的,同时也提高了轴的抗扭强度。其三、在测试件这一块,也有别于以往的水平和垂直放置的相对单一的摆放方式,但是同时这也对设计提出了更高的要求,因为还有考虑剃度加速度对测试件的影响。因此,可以说这套设计方案还是有其独特的地方。3 实验台的结构设计3.1 电动机的选择: 以知条件: 旋转架转速: 小于 300r/min旋转架启动平稳时间:180s最大离心加速度:70g3.1.1 选择电动机类型和结构形式南昌航空大学科技学院学士学位论文 9Y 系列笼型三相异步交流电动机由于结构简单,制造、使用和维修方便,价格便宜,并且具有效率高、启动转矩大等特点,适用于不易燃、不易爆、无腐蚀性气体的一般场所和无特殊要求的机械上,故选用 Y 系列笼型三相异步交流电动机。3.1.2 选择电动机的容量电动机工作时所需的功率 Pd:Pd=Pw/η(kw)工作机所需的功率 Pw: Pw=T·nw / 9550(kw)式中 T — 实验台的工作阻力矩 N·m;nw — 实验台转臂的转速 r/min,实验台的阻力矩:T=I z·ε(N·m )式中 I — 实验台的转动惯量 kg·m2ε— 实验台的角加速度 rad/ s2,可根据设计要求选取。由已知条件可取被测试件的重量为 35kg,被测试件的重心到转臂中心的距离取500mm。考虑到实验台工作时要求转臂两边平衡,可在转臂另一边对称的放置一个配重,则实验台的转动惯量,则,被测试件的转动惯量为:I1=2mR2=2 35 0.52=17.5 kg·m2另外,转臂自身及其夹具的转动惯量可初步估算,这里取:I 2=12.5 kg·m2则,实验台的总转动惯量 I=17.5+12.5=30 kg·m2实验台从启动到稳定转动所需的时间为 3 分钟,其最大角加速度为 70g,选取ε=3.8/ s2则,实验台的工作阻力矩为:T=I·ε=30 3.8=114 N·m所以 Pw=114 300/9550=3.58 kW传动总效率 η:V 带轮的传动效率 η1=0.96;四角接触球轴承的传动效率 η2=0.98;滚动轴承的传动效率 η3=0.98;=η1η2η3=0.96 0.98 0.98=0.922总因此 Pd=Pw/η=3.58/0.992=3.30 kW因为忽略了风阻以及系统的一些摩擦力矩,电动机额定功率 Pde 大于 Pd 即可,南昌航空大学科技学院学士学位论文 10由《机械设计指导》的表 14-1 选得 Y 系列电动机额定功率 Pde 为 5.5 kW。3.1.3 选择电动机的转速回转台的转约速为 300r/min通常,带轮轮传动 i=2~4 ,故电动机的转速范围为 600~1200 r/min从重量、价格以及传动比等考虑,选用 Y160M2—8 电动机。3.1.4 确定电动机转速同一类型、功率相同的电动机具有多种转速。如选用转速高的电动机,其尺寸和重量小,价格较低,但是会使传动装置的总传动比、尺寸结构和重量增加。选用速度低的情况刚好相反。因此,在综合考虑电动机及传动装置的尺寸、重量、价格,并且根据传动比的需要,选用电动机的同步转速为:1000 r/min。现由根据《机械设计实用手册》选电动机的型号为:Y160M2—8。具体参数如下:电动机技术数据型号 额定功率KW转速r/min 电流A 效率% 功率因素cosφ Y160M2-8 5.5 720 13.3 85 0.74堵转电流 堵转转矩 最大转矩 转动惯量 重量(Kg)6.0 2.0 2.0 0.931 1193.1.5 电动机的安装B3 型安装型式尺寸机座号 A B C D E F G160M 254 210 108 42 110 12 37L K H AB AC AD HD600 15 1600-0.5 330 325 255 385安装图样
    展开阅读全文
    1
      金牌文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:旋架式加速度过载模拟实验台结构设计与分析.rar
    链接地址:http://www.gold-doc.com/p-228569.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们
    copyright@ 2014-2018 金牌文库网站版权所有
    经营许可证编号:浙ICP备15046084号-3
    收起
    展开