当前位置:首页>> >>


关于GIS中距离测算的探讨.rar

收藏

资源目录
    文档预览:
    编号:20180915222606851    类型:共享资源    大小:831.62KB    格式:RAR    上传时间:2018-09-15
    尺寸:148x200像素    分辨率:72dpi   颜色:RGB    工具:   
    20
    金币
    关 键 词:
    关于 GIS 中距离 测算 探讨
    资源描述:
    第 1 页 (共 12 页) 关于 GIS 中距离测算的探讨作 者:郭 琪指导教师:张海军摘要: 本文对 GIS 中常用的几种距离测算的基本概念、原理进行分析,结合ArcGIS 和相关软件阐述了欧氏距离、曼哈顿距离和网络距离在实际应用中的测算,并探讨了不同尺度和应用环境下距离测算时应该注意的事项。关键词:距离测算;GIS;欧氏距离;曼哈顿距离;网络距离0 引言“距离”是人们日常生活中经常涉及的概念,它描述了两个事物或实体之间的远近程度。日常用到的距离包括欧氏距离、曼哈顿距离和网络距离。其中,最常用的是欧氏距离,无论是矢量结构还是栅格结构都很容易实现。在 GIS 中,距离通常是两个地点之间的计算,但有时人们想知道一个地点到所有其他地点的距离,这时得到的距离是一个距离表面。如果一区域中所有的性质与方向无关,则称为各向同性区域。以旅行时间为例,如果从某一点出发、到另一点的所耗费的时间只与两点之间的欧氏距离成正比,则从一固定点出发、旅行特定时间后所能达到的点必然组成一个等时圆。现实生活中,旅行所耗的时间不只与欧氏距离成正比,还与路况、运输工具性能等有关,从固定点出发、旅行特定时间后所能到达的点则在各个方向上是不同距离的,形成各向异性距离表面,如图 1 所示。第 2 页 (共 12 页) 图 1 各向同性和各向异性的距离表面考虑到阻力影响计算的距离称为耗费距离。物质在空间中移动总要花费一些代价,如资金、时间等,阻力越大耗费也越大。相应的通过耗费距离得到的距离表面成为阻力表面或耗费表面,其属性值代表一耗费或阻力大小。可以根据阻力表面计算最小耗费距离。对于描述点、线、面坐标的矢量结构,也有一系列的不同于欧氏距离的概念。欧氏距离通常用于计算两点的直线距离:(1)1kkijijdXY当有障碍或阻力存在时,两点之间的距离就不能用直线距离。计算非标准欧氏距离的一般公式为:(2)1kkijijd当 k=2 时,就是欧氏距离计算公式。当 k=1 时,得到的距离称为曼哈顿距离 [1-2]。1 欧氏距离1.1 欧氏距离的原理及实现方法欧氏距离是一个通常采用的距离定义,它是在 m 维空间中两个点之间的真实距离。在 ArcGIS 中,可以通过简单地点击(“measure”)工具来得到两点之间的欧氏距离(或若干点之间的累计距离) 。许多 ArcGIS 空间分析会顺带给出一些距离值。在空间连接中,线或多边形之间的距离是最近点之间的距离。在 ArcToolbox > Analysis Tools > Proximity 中,Near 工具用来计算图层中任一点与另一图层中跟它最近的线或点的距离。某些操作需要用到同一图层或第 3 页 (共 12 页) 不同图层中任意两点之间的距离即距离矩阵。ArcToolbox 里的点距离(Point Distance)工具可以实现这个功能,调用办法为依次点击ArcToolbox > Analysis Tools > Proximity > Point Distance。在输出文件中,如果 DISTANCE 值为 0,则可能实际距离确实为 0(例如,某点跟它自身的距离) ,也可能是超出了搜索半径之外。1.2 欧氏距离的计算公式二维的公式:(3)2211dxy三维的公式:(4)222111z推广到 n 维空间,的公式:(5)21iidx其中 i=1,2..n (n 为自然数) ,X i1 表示第一个点的第 i 维坐标,Xi2 表示第二个点的第 i 维坐标。n 维欧氏空间是一个点集,它的每个点可以表示为(X (1),X(2),...X(2)),其中 X(i)(i=1,2...n)是实数,称为 X 的第 i个坐标,两个点 X 和 Y=(Y(1),Y(2),...Y(2))之间的距离 d(x,y)定义为上面的公式。可看作信号的相似程度。距离越近就越相似,就越容易相互干扰,误码率就越高。1.3 欧氏距离的测算及适用欧氏距离的测算方法不止一个,如可以通过网络分析中心NODEDISTANCE 命令来实现,在此主要探讨如何不用网络分析来计算。在计算欧氏距离之前,首先要准备数据,并一次完成数据格式的转换,生成相应 coverage。如果研究区的地理范围较小(如一个城市或一个县域单元) ,直角坐标系下两个结点(x 1, y1)、(x 1, y2)之间的欧氏距离可以近似地表作:(6)221/11[()()]dx1.3.1 生成县域重心县域重心的生成主要利用 ArcToolbox 工具箱中的 Data Management Tools 工具来实现,从而完成要素到点之间的转换。1.3.2 计算欧氏距离第 4 页 (共 12 页) 在 ArcGIS 软件中的测算主要是通过具体工具来实现的,具体就是利用 ArcToolbox 工具箱 Analysis Tools 工具下的 Proximity 来实现Point Distance。需要注意的是这里不需要限定收索半径,因为我们需要计算所有的距离。同时所得表中一共有 203(县)× 4(市)= 812 条距离记录。在距离表中加入一列 airdist,根据公式airdist=distance/1000 计算,就可得到欧氏距离的公里数。2 曼哈顿距离2.1 曼哈顿距离的概念及原理曼哈顿距离是指两点在南北方向上的距离加上在东西方向上的距离,即(7),ijijIJDXY对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离因此曼哈顿距离又称为出租车距离,曼哈顿距离不是距离不变量,当坐标轴变动时,点间的距离就会不同。例 如 在 平 面 上 , 坐 标 ( x1, y1) 的 点 P1与 坐 标 ( x2, y2) 的 点P2的 曼 哈 顿 距 离 为 : (8)1212dx要 注 意 的 是 , 曼 哈 顿 距 离 依 赖 坐 标 系 统 的 转 度 , 而 非 系 统 在 坐标 轴 上 的 平 移 或 映 射 。 其 命 名 原 因 是 从 规 划 为 方 型 建 筑 区 块 的 城市 ( 如 曼 哈 顿 ) 间 , 最 短 的 行 车 路 径 而 来 ( 忽 略 曼 哈 顿 的 单 向 车 道以 及 只 存 在 于 3、14 大 道 的 斜 向 车 道 ) 。 任 何 往 东 三 区 块 、 往 北 六区 块 的 的 路 径 一 定 最 少 要 走 九 区 块 , 没 有 其 他 捷 径 。2.2 曼哈顿距离的测算及应用曼哈顿距离的测算方法也是不止一种,我们在此还是主要探讨如何不用网络分析来计算。2.2.1 县域重心和城市重心 XY 坐标的添加这里主要利用 ArcToolbox 工具箱中 Data Management Tools 和Coverage Tools 工具,来实现县域重心和城市重心 XY 坐标的添加。并将所得结果保存在 x-coord 和 y-coord 两列中。第 5 页 (共 12 页) 2.2.2 将坐标连接到县和市的距离表要实现这部需要利用 Dist.dbf 表,通过 Joins and Relates 来实现。过程中应当注意的是要选择 FID 字段和 INPUT_FID 字段作为连接关键词把两个表连接起来(源数据表 CntyNEpt 和目标表 Dist.dbf) 。同样,在连接 City4 属性表和 Dist.dbf 表时也应选择 FID 和NEAR_FID 字段作为关键字。2.2.3 曼哈顿距离的计算曼哈顿距离的计算非常简单,在前期数据准备到位之后只需利用公式:Mdist = abs(x-coord - point-x)/1000+abs(y-coord - point-y)/1000 (9)来计算其数值就行。过程中应当注意的是所得曼哈顿距离的单为公里,通常要比欧氏距离大。3 网络距离3.1 网络距离的概念网络距离是基于实际路网(如公路网,铁路网)的最短路径(或最短时间或最小成本)距离。如果是栅格形路网,可以用曼哈顿距离近似地代替网络距离。3.2 网络距离和网络时间的测算网络由一组结点及连接结点的线段(边或连接线)组成。如果线段方向是确定的(如单向的街道) ,我们得到一个定向网络。一个没有确定方向的网络可以看作定向网络的一种特例,即每条线段有两个可能的方向。最短路径问题就是寻找从某个起点到某个终点之间的最短路径,即在给定线段阻滞(如旅行速度)的情况下距离最短或时间(费用)最省。最短路径问题有多种解决办法,如标号设定算法及赋值图像法(或 L-矩阵法) 。3.2.1 最短路径问题的标号设定广为使用的标号设定算法最早由迪卡斯缺(Dijkstra,1959)提出。该方法是这样的,为每个结点设置一个“标签 ”,代表到某个结点的最短距离。为简便起见,起始结点被命名为结点 1。本法包括四个第 6 页 (共 12 页) 步骤,在此就不再论述。3.2.2 用 ArcGIS 测算网络距离和时间ArcGIS 中处理的网络包括交通网络和市政管道网络,在这里我们只讨论交通网络。在许多空间分析中,我们需要一系列起点和终点两两之间的距离矩阵。为此,需要用 ArcInfo 工作站,即用ArcPlot 模块里面的 NODEDISTANCE 命令。默认情况下,NODEDISTANCE 命令是通过公路网络来计算最短距离。同时它也提供了计算欧氏距离或曼哈顿距离的选项。恰当地定义选项IMPEDANCE 作为时间或成本,就可以计算最短交通时间或最小交通成本。网络距离矩阵的计算也主要是通过利用 ArcGIS 软件来实现的。具体就是在建立网络的基础上用 NETCOVER 命令建立网络计算的路径系统,从而定义始结点、末结点及阻力参数,最后,用NODEDISTANCE 命令来计算始末结点之间的网络距离。需要注意的是,NODEDISTANCE 命令只计算网络上结点之间的距离。但是,起始点或终点有可能并不在网络上。虽然起始点(或终点)到网络结点之间的距离有可能很小,但仍需计算在内。这是计算网络距离时需要考虑的一个重要步骤。4 网络距离实例应用在 ArcGIS 的空间分析中,网络距离的应用非常常见,可以说无处不在。在此仅以河南省的 108 个县级单位为例来阐述网络距离的实例应用。采用的数据有河南省 108 个县级行政区域图、河南省公路网、河南省道路网及区域边界。具体如下图 2 所示:第 7 页 (共 12 页) 图 2 河南省公路、铁路网络图欲实现网络距离的测算首先要得到这 108 个县级行政单位的重心点,而重心点的求得又必须在网络数据集的基础上才能进行。所以首先要利用 ArcCatalog 模块建立网络数据集,然后将所得数据集拉到 ArcMap 操作界面下,从而求得这 108 个县级行政单位的重心点。接下来,用 ArcToolbox 工具箱中的 Network Analyst 工具下的OD 成本矩阵来测算这 108 个重心点两两之间的距离,从而就实现了网络距离的测算。其中要注意的就是在设定搜索范围的时候,我们可以根据具体情况来适当扩大搜索半径。由于最终测算的结果是一个 108 乘以 108 的矩阵,在此就不在以图示的方式呈现了。5 测地距离虽然欧氏距离和曼哈顿距离是 GIS 距离测算中最常见的两种,但在地理信息系统的具体应用过程中,我们又常常会遇到这样的问题,如求一个状崎岖蜿蜒的地块长度;在某一具体地块内两点间铺第 8 页 (共 12 页) 设管线,选取最短路径并计算相应的距离;行驶在形状极不规则的湖泊中的小船沿什么样的路径前进才能使起点与终点间的航程最短[3-4]。通常情况下,我们总是习惯在相应的起点和终点之间用直线段来相连,来求取相应的直线距离,即欧氏距离。但这种常用的方法并不是对所有的情况都是有效的,当两点间的直线段有部分落在所考虑的区域之外时,欧氏距离对所要讨论的问题在实际上是没有意义的,自然这就是欧氏距离在 GIS 空间分析过程中的局限所在。原因在于在定义区域中两点间距离的过程中,没有考虑到区域连通性,仅考虑了起点与终点间的抽象距离。为了克服欧氏距离的局限性,在实际应用的过程中,我们运用数学形态中的测地距离,将其引用到 GIS 空间分析的领域里,并得到了一种在矢量型 GIS 中测地距离的求取方法,显然,无论在理论还是应用方面,它都具有十分重要的意义。5.1 测地距离求取的基本思想首先要求得两点间的直线段与多边形各边所有可能的交点并判断出首末交点的位置,然后依据首末交点来对其间的多边形顶点重新排序,并在此基础上逐次剔除所有的凹点,这样就能得到测地弧(标注引用)上所有的转折点,最后通过累加测地弧上相邻转折点间的距离就可得到两点间的测地距离。6 方位距离方位距离的测算是 GIS 开发、数据库建立、数字地图应用当中的几何分析、地形分析、网络分析等空间分析中最基本的量算。然而受传统地图数学基础建立思想和模拟地图分析算法的影响,当前GIS 及数字地图中方位、距离的测算都是在具体的投影平面上操作的。随着 GIS 应用的不断深入及 “数字地球 ”的提出,GIS 的数据区域不断得到拓展,相继出现了大型 GIS,其作用的空间有局部的小范围拓展到地学大范围甚至全球范围(标注引用) 。区域的扩大,造成地图投影的选择应用变得非常复杂,不确定因素显著增加。在传统的地图投影当中,为了限制变形,我们常常采用不同的标准纬第 9 页 (共 12 页) 线或者中央经线,即分带法。然而对超宽带或跨界于若干带而言,带边缘变形显著增大,邻域拼接非常困难。传统的在局部投影平面上的各种分析、量算方法难以在全域内得到准确实施。故而,在大型 GIS 和大区域数字地图的空间分析当中,方位距离的测算应基于(B,L)2 维场所决定的地球椭园面几何参考系当中进行 [5-6]。7 基于三维栅格的 GIS 距离分析及应用基于三维栅格的 GIS 距离分析算法可以应用于非均质的三维缓冲体的生成,其中,非均质指的是生长元所处的三维空间是非均质的。缓冲体的生成可以看成从生长元开始,逐步向周围的邻域扩张,继而扩张的半径逐步增大,直到扩张到的体元及生长元的最小距离大于或等于给定的缓冲区半径为止,而对于其中超出缓冲区半径范围的地物则不需要去计算其距离值。因此,要生成缓冲体,就必须要计算背景体元到生长体元的最小距离。在实际的地质应用当中,又需要考虑在某地物周围生成相应的缓冲体的过程中遇到的障碍物或约束面的情况。如:污染源在地下扩散的过程当中遇到不渗透层,地下铺设管道一定距离范围内遇到坚硬的岩层等。又因为地下岩层的不均一性造成地层渗透性在各方向上大小不一样,所以,地下污染源在各方向上的扩散速度和污染程度也是不一样的,也就是说缓冲体在各方向上的扩张距离是不相等的并且在不同距离缓冲体范围内的研究属性也是不一样的,体元间的最短距离不能够用直线距离来表示。此时,可以通过一定的应用模型来对每个体元赋值(属性值) ,表示经过此点的阻抗或耗费,弱某点不可逾越,则需将此体元的属性附为负值,这样一来栅格模型就可以转变成为网络模型。然后,应用适当的最短距离算法,就可以生成非均质的三维缓冲体了。如图 3 所示。第 10 页 (共 12 页) 图 3 地下岩层切面图 图 4 三维缓冲体切面图 图 5 三维缓冲体立体图图示为一个简化的应用模型,假设上下两层为不同岩性的地层,下面岩层的渗透性要比上面岩层的渗透性要好,同时,在下面的岩层中存在一砂岩透镜体,此透镜体与周围岩性不一样,同时,此透镜体的渗透性要比周围的岩层好。此时,假设在上面的岩层中存在一污染源,将其抽象为一点,此污染源向下进行扩散,影响范围就是生成的缓冲体,如图 4、图 5 所示分别为生成的缓冲体的切面和立体图,从图上可以看出,污染源向下经过透镜体的扩散速度要比其它的方向要快 [7-10]。8 结语通过以上论述我们可以知道,空间分析归根结底是考察自然和人类活动在空间分布上的变化,换言之,即考察这些活动相对于参照位置随距离的变化。很多时候,一旦通过 GIS 测定了距离或时间,我们就可以在 GIS 环境之外开展进一步的研究。从而 GIS 技术的不断进步和广泛应用就能使得相关研究工作变得越来越容易。在空间平滑和空间插值中使用距离测量能来确定纳入计算的对象及计算影响的程度;在服务区分析中,商店与消费者之间的距离(或时间)能够确定距离消费者最近的商店以及居民到商店购物的频率;在可达性测量中,距离或时间是构建移动搜寻或引力法的基础。另外,人口密度或土地利用强度从城市或区域中心向外有随距离衰减的态势。总之,本文系统的阐述了 GIS 中欧氏距离、曼哈顿距离以及网络距离的概念及测算方法,并用实例探讨了 GIS 中不同尺度和应用环境下的距离测算及应用。
    展开阅读全文
    1
      金牌文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    0条评论

    还可以输入200字符

    暂无评论,赶快抢占沙发吧。

    关于本文
    本文标题:关于GIS中距离测算的探讨.rar
    链接地址:http://www.gold-doc.com/p-186009.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们
    copyright@ 2014-2018 金牌文库网站版权所有
    经营许可证编号:浙ICP备15046084号-3
    收起
    展开